
for Red Hat Enterprise Linux

Packaging software

Carl George

Principal Software Engineer

Red Hat

Scott McBrien

Technical Contributor

Red Hat

RPMs

RPMs

Lab: initialize

Open the link below and click the button.

red.ht/rpm

https://red.ht/rpm

RPMs

What is RPM?

▸ Package format used by Fedora, CentOS, RHEL, and other operating systems

▸ Used by packaged managers such as DNF to manage software

RPMs

Why package with RPM?

▸ Easily install, reinstall, remove, and upgrade software

▸ Query and verify installed packages

▸ Metadata to describe package properties and relationships with other packages

▸ Digitally signed packages to validate authenticity

▸ Distribute packages in DNF repositories

▸ Pristine sources to ease future maintenance

RPMs

What is an RPM package?

▸ Special archive containing files and metadata

▸ Two types:
･ A binary RPM contains the files to be installed on the target system

･ A source RPM (SRPM) contains source code and instructions to build a binary RPM

RPMs

What is a spec file?

▸ Recipe for building the package

▸ Preamble that defines metadata about the package

▸ Body with several sections for various stages of the build process

▸ Conditionals for flexibility between operating systems, architectures, etc.

RPMs

RPM macros

▸ Variables for text substitution in the spec file
･ Syntax: %example or %{example}

▸ Some macros accept parameters to influence the output

▸ Can be defined inside the spec file or on the system:
･ /usr/lib/rpm/macros.d/macros.*

･ /etc/rpm/macros.*

･ ~/.rpmmacros

▸ Can be conditional to only expand when the macro is defined, e.g. %{?dist}

▸ Can be explored outside of the build process:
･ rpm --eval '%example' ⟶ evaluate a specific macro

･ rpm --showrc ⟶ print all defined macros

RPMs

Common macros

▸ Filesystem paths:
･ %{_bindir} ⟶ /usr/bin

･ %{_datadir} ⟶ /usr/share

･ %{_sysconfdir} ⟶ /etc

▸ Operating system properties:
･ %{rhel} ⟶ 9

･ %{dist} ⟶ .el9

▸ Build process helpers:
･ %autosetup ⟶ extract source code archives and apply patches

･ %configure ⟶ ./configure with packaging-specific options

･ %make_build ⟶ make with packaging-specific options

･ %make_install ⟶ make install with packaging-specific options

RPMs

Common macros

▸ Python helpers:
･ %py3_build ⟶ python3 setup.py build with packaging-specific options

･ %py3_install ⟶ python3 setup.py install with packaging-specific options

▸ CMake helpers:
･ %cmake ⟶ cmake with packaging-specific options

･ %cmake_build ⟶ cmake --build with packaging-specific options

･ %cmake_install ⟶ cmake --install with packaging-specific options

▸ Meson helpers:
･ %meson ⟶ meson with packaging-specific options

･ %meson_build ⟶ meson compile with packaging-specific options

･ %meson_install ⟶ meson install with packaging-specific options

RPMs

Packaging workspace setup

▸ The rpmdevtools package includes the rpmdev-setuptree command

▸ Running that command on a system will create the following directories:
･ ~/rpmbuild/BUILD

･ ~/rpmbuild/RPMS

･ ~/rpmbuild/SOURCES

･ ~/rpmbuild/SPECS

･ ~/rpmbuild/SRPMS

RPMs

Lab: workspace setup

Your first challenge is to set up your packaging workspace.

Click the button and follow the on screen instructions.

Once you have completed the instructions, click the button.

RPMs

Spec file preamble

▸ Name ⟶ name of the package, should match the spec file name

▸ Version ⟶ version of the software being packaged

▸ Release ⟶ package release, used to distinguish between different builds of the

same software version

▸ These properties form a useful identifier know as the NVR, some examples:
･ gawk-5.1.0-6.el9

･ tzdata-2023c-1.el9

･ virt-what-1.25-1.el9

▸ Epoch ⟶ optional integer used to override normal version-release sorting order

RPMs

Spec file preamble

▸ Summary ⟶ short one line summary of the package

▸ License ⟶ identifier for the license of the software being packaged

▸ URL ⟶ URL for more information about the software

▸ Source ⟶ file name or URL of a file needed to build the software, such as the

source code archive or default config files (can be used multiple times)

▸ Patch ⟶ file name or URL of patch to apply to the source code (can be used

multiple times)

▸ BuildArch ⟶ defaults to the build system architecture, can be set to noarch for

packages with no architecture-dependent files

RPMs

Spec file preamble

▸ BuildRequires ⟶ other packages needed to build this package

▸ Requires ⟶ other packages needed to install this package

▸ Conflicts ⟶ other packages that cannot be installed at the same time

▸ Obsoletes ⟶ used to replace one package with another

▸ Provides ⟶ allows other packages to refer to this package by another name

▸ Recommends ⟶ weak requires, installed by default but can be removed

▸ Supplements ⟶ reverse recommends

RPMs

Spec file body

▸ %description ⟶ description of the package, can span multiple lines

▸ %prep ⟶ commands to prepare the source code for building (unpacking

archives, applying patches, etc.)

▸ %build ⟶ commands to build the software

▸ %install ⟶ commands to copy the desired build artifacts into the appropriate

filesystem locations relative to the buildroot

▸ %check ⟶ commands to test the software, e.g. running unit tests

▸ %files ⟶ list of files and directories that will be installed on the target system

▸ %changelog ⟶ record of changes that have happened to the package between

different versions and releases

RPMs

File attributes

▸ In %files, each file and directory can be preceded by an attribute
･ %dir ⟶ own just the directory itself, but not its content

･ %config ⟶ mark a file as configuration

･ %config(noreplace) ⟶ mark a file as configuration and prevent it from being

overwritten on updates

･ %attr(<mode>,<user>,<group>) ⟶ set non-default permissions or ownership

▸ Some attributes accept relative paths to copy files into the %{buildroot}
･ %license ⟶ copy file to /usr/share/licenses/%{name}/ and mark as license

･ %doc ⟶ copy file to /usr/share/doc/%{name}/ and mark as documentation

RPMs

Creating spec files

▸ From scratch

▸ Copy a similar spec file and adjust as needed

▸ Automatic templates from a text editor

▸ The rpmdevtools package includes the rpmdev-newspec command to

create a new spec files from templates

RPMs

Creating changelog entries

▸ By hand

▸ Copy another changelog entry and adjust as needed

▸ Text editor plugins

▸ The rpmdevtools package includes the rpmdev-bumpspec command to

create new changelog entries and simultaneously adjust version and release tags

RPMs

Building RPMs

▸ RPMs are built with the rpmbuild command

▸ This commands expects the directory structure from rpmdev-setuptree

▸ Several build modes:
･ -bs ⟶ build an SRPM from a spec file and sources

･ -bb ⟶ build an RPM from a spec file and sources

･ -ba ⟶ build both an SRPM and an RPM from a spec file and sources

･ --rebuild ⟶ build an RPM from an SRPM

▸ Example:
･ rpmbuild -ba SPECS/bello.spec

RPMs

Quality checking RPMs

▸ rpmlint is a linter tool for spec files, SRPMs, and RPMs

▸ Identifies common packaging errors

▸ Ideal to resolve all errors and warnings, but not always possible

▸ rpm can query an uninstalled RPMs by using the --package flag

▸ Consider the following rpm flags:
･ --info

･ --list

･ --requires

･ --provides

･ --conflicts

･ --changelog

RPMs

Lab: packaging bello

Your next challenge is to package bello, a “Hello World” program written in Bash.

Click the button and follow the on screen instructions.

Once you have completed the instructions, click the button.

RPMs

Installing build requirements

▸ Build requirements in the spec file must be installed on the build host

▸ Can be installed manually or with dnf builddep

RPMs

Lab: packaging cello

Your next challenge is to package cello, a “Hello World” program written in C.

Click the button and follow the on screen instructions.

Once you have completed the instructions, click the button.

RPMs

Lab: packaging pello

Your next challenge is to package pello, a “Hello World” program written in Python.

Click the button and follow the on screen instructions.

Once you have completed the instructions, click the button.

RPMs

Mock

▸ Drawbacks of using rpmbuild directly:
･ Build requirements must be installed on the build host

･ Build requirements that are already installed are easy to forget in the spec file

･ Can only build RPMs targeting the same operating system and release as build host

▸ mock is a tool that builds RPMs in isolated chroots
･ Uses rpmbuild internally

･ Build requirements are installed in the chroot, not on the build host

･ Helps identify missing build requirements

･ Can build RPMs for different operating systems and releases than the build host

･ Chroots are automatically created and removed

･ Widely used (Koji, Copr, fedpkg, and more)

RPMs

Lab: building with mock

Your final challenge is to build the pello package using the mock tool.

Click the button and follow the on screen instructions.

Once you have completed the instructions, click the button.

Containers

Containers

Lab: initialize

Open the link below and click the button.

red.ht/containerize

https://red.ht/containerize

Containers

How to build?

▸ From Scratch?
･ Ultimate customization

･ You also assume more maintenance burdens

▸ From Base Image?
･ Which one?

･ From who?

･ How is it managed from the provider?

Base Images

Base Images from Red Hat
▸ Built using software from

Red Hat Enterprise Linux

▸ Redistributable without a subscription

▸ Regularly maintained

▸ Available from Red Hat Container

Catalog or Dockerhub

▸ Several options to choose from

Runtime UBIs

Language runtime variants
▸ Uses UBI

▸ Includes base language runtime and additional

Red Hat provided libraries

▸ Not always size-optimized

Using RPMs

Using RPMs

▸ Many images include dnf or microdnf

▸ UBI images are configured with Red Hat UBI repos

(which are a subset of RHEL)

▸ You can add additional repos

Containers

Making an “archive”

▸ Position files where they need to go

▸ Use multiple content sources

▸ Equally automatable with a Containerfile

Containers

Building with buildah

$ buildah from registry.access.redhat.com/ubi9/ubi

▸ Downloads base image

▸ Mounts working copy of container filesystem

Containers

Run commands with buildah

$ buildah run ubi-working-container -- dnf -y install RPM-NAME

▸ Runs command within change-rooted container environment

▸ -- separates host portion of command from change-rooted, in container,

command

Containers

Positioning files with buildah

$ buildah run ubi-working-container -- dnf -y install RPM-NAME

▸ Runs command within change-rooted container environment

▸ -- separates host portion of command from change-rooted, in container,

command

Containers

Positioning files with buildah

$ buildah copy ubi-working-container <file/dir> <dir-in-container>

▸ Copies content into the target container

RPMs

Lab: Containerizing Applications

In this lab you will build two containerized applications

1) Install software from the UBI repos and 3rd Party repository (EPEL)

2) Position files pulled down from a github project & install UBI-provided software

Flatpaks

Flatpaks

An alternate packaging for RHEL

▸ Flatpaks are supported on RHEL

▸ User-installable software

▸ Requires a redhat.com account with RHEL entitlements

▸ Flatpaks from Red Hat are maintained with the same rigor as our RPM

packaged content

Flatpaks

Installing flatpak

dnf install flatpak

▸ Installs flatpak -- users can now use flatpak to configure repositories and

add software

Flatpaks

Enabling a repo

$ flatpak remote-add rhel https://flatpaks.redhat.io/rhel.flatpakrepo

▸ Adds the flatpak repo for a user -- users can add additional repos from

3rd party providers into their configuration as well

Flatpaks

Authenticating

$ podman login registry.redhat.io

▸ The Red Hat flatpak repo is available to authenticated users

e.g. those with a redhat.com customer portal account

Flatpaks

Installing a flatpak

$ flatpak install rhel firefox

Flatpaks

Running a flatpak

$ flatpak run org.mozilla.Firefox

▸ When running a flatpak, you must use the Application ID, which can be

obtained, after install, from flatpak list

We would love to talk to you!
Our Red Hat User Experience team would love to talk to you

about your experience using console.redhat.com, Image

Builder, Red Hat Insights, or any Red Hat Product!

Katie Riker
kriker@redhat.com

Melissa Grimes
mgrimes@redhat.com

Sign up to give user feedback:

Or come visit the Experience Zone!

If you see us, come say hi!

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you

