

PACKAGING FOR BEGINNERS

EPEL Steering Committee Chair

tdawson@redhat.com

Carl George
CPE EPEL Team Lead

carl@redhat.com

@carlwgeorge

Troy Dawson

CPE Engineer

nils@redhat.com

Nils Philippsen

carl@redhat.com

SHAMELESS PLUG FOR THE EPEL SURVEY

In case you missed it during the introductory remarks, EPEL is
doing a survey and we’d love your feedback.

Survey link:
https://fedoraproject.limequery.com/396386
or
https://tinyurl.com/epelsurvey2022

https://fedoraproject.limequery.com/396386
https://tinyurl.com/epelsurvey2022

carl@redhat.com

TOPICS FOR TODAY

● What is source code?
● How programs are made.
● Building software from

source.
● Patching software.
● Installing arbitrary artifacts.

● What is an RPM?
● What is a spec file?
● Buildroots
● RPM macros
● Building RPMs
● Quality checking RPMs

General topics RPM packaging

carl@redhat.com

ABOUT THIS GUIDE

Our workshop today will roughly follow the Red Hat Developer
RPM Packaging Guide.

● The guide will be a resource today and a reference later.
● We will not cover the whole thing in this session.
● Appendix is full of advanced topics we will not have time for.
● It is a living document.
● Pull requests are welcome and encouraged.

https://github.com/redhat-developer/rpm-packaging-guide

https://github.com/redhat-developer/rpm-packaging-guide

carl@redhat.com

ABOUT THIS GUIDE CONT.

Packaging guide online:
https://rpm-packaging-guide.github.io/rpm-packaging-guide.pdf
or
https://tinyurl.com/nestrpm

https://rpm-packaging-guide.github.io/rpm-packaging-guide.pdf
https://tinyurl.com/nestrpm

carl@redhat.com

PREREQUISITES

● You will need access to a Fedora, CentOS, RHEL, or RHEL
derivative (Alma, Rocky, Oracle, etc.) to perform the labs in
today’s workshop.

● This can be the machine you’re using or a remote system you have
SSH access to.

carl@redhat.com

LAB - PREREQUISITES (PAGE 3)

Run the specified dnf/yum command on this page to install the
packages you will need to complete the workshop.

If anyone is running an EL8 system, see the adjustments needed here:
https://github.com/redhat-developer/rpm-packaging-guide/pull/90

Time: <5 minutes

https://github.com/redhat-developer/rpm-packaging-guide/pull/90

GENERAL TOPICS AND BACKGROUND

carl@redhat.com

WHAT IS SOURCE CODE? (PAGE 7)

● Human friendly representation of instructions for the
computer.

● The Bash shell is an interactive shell which happens to be
“scriptable” (as most shells are). Its scripting language is in
fact a programming language and therefore its instructions
to the computer can be considered source code.

carl@redhat.com

HOW PROGRAMS ARE MADE (PAGE 8)

● Compilation
○ The process by which source code is translated into a

representation the computer understands, native
computer language or otherwise.

● Types of execution
○ Natively compiled
○ Interpreted

■ Byte compiled
■ Raw interpreted

carl@redhat.com

TYPES OF BUILDS (PAGE 8)

● Native
○ Translated (compiled) directly to machine code
○ Can execute directly on the system

● Interpreted (byte compiled)
○ Translated into an optimized intermediate

representation known as byte code
○ Needs an interpreter to execute

● Interpreted (raw)
○ Interpreted and executed directly by its

runtime as the source code is parsed
○ Needs an interpreter to execute

carl@redhat.com

BUILDING SOFTWARE (PAGES 9-12)

● Building
○ Software compilation is often referred to as “building”.
○ “Build systems” or “build tools” such as make or meson

automate this process.
● Natively compiled source code

○ Must be “built” in order to execute as it doesn’t have an
interpreter to execute it otherwise.

○ Hardware architecture specific.
● Interpreted source code

○ If byte-compiled, byte code must must be “built”.
○ Some byte-compiled languages do this automatically

(Python, Ruby) and others must be built by hand (Java).

carl@redhat.com

PATCHING SOFTWARE (PAGES 12-14)

● A software patch is much like a cloth patch used in repair of a
shirt, a blanket, a pair of pants, etc.

● It’s meant to either repair a defect (bug) found in the software
or add new functionality that was previously missing.

● This is important for RPM packagers because we will often
find ourselves needing to fix something or add functionality
before the next upstream version.

● Original source code remains pristine for auditability,
reproducibility, and debugging purposes.

carl@redhat.com

INSTALLING ARTIFACTS (PAGES 14-16)

● Installation on Linux systems
○ Placing file in the “correct” place.

● Filesystem Hierarchy Standard (FHS)
○ Default directory structure.
○ Defines context for arbitrary files based on location (/etc,

/usr/bin, /usr/share, and so on).
● install command

○ Part of GNU coreutils.
○ Copies files into their destination.
○ Handles modes, ownership, etc.

RPM PACKAGING GUIDE

carl@redhat.com

WHAT IS AN RPM PACKAGE? (PAGE 20)

● File containing other files and metadata about them.
● More specifically

○ Lead 96 bytes of “magic” (no longer used, retained for
backwards compatibility).

○ Digital signature.
○ RPM header containing the metadata.
○ CPIO archive containing the payload (the actual files to be

installed on the target system).

carl@redhat.com

WORKSPACE SETUP (PAGE 21)

● The rpmdevtools package includes the rpmdev-setuptree
command.

● Running that command on a system will create the following
directories.
○ ~/rpmbuild/BUILD
○ ~/rpmbuild/RPMS
○ ~/rpmbuild/SOURCES
○ ~/rpmbuild/SPECS
○ ~/rpmbuild/SRPMS

carl@redhat.com

LAB - WORKSPACE SETUP (PAGE 21)

Run the rpmdev-setuptree command on your system to set up the
directory structure we will be using for the rest of the labs.

Time: <5 minutes

SPEC FILES

carl@redhat.com

WHAT IS A SPEC FILE? (PAGE 21)

● Recipe or set of instructions to tell rpmbuild how to actually
build an RPM.

● Composed of various sections and headings.
○ Metadata
○ Build instructions
○ File manifest

● Where we define the name, version, and release (NVR)
○ This is used to compare packages to determine which

available packages are upgrades for installed packages.
○ Example: bash-5.1.16-2.fc36

carl@redhat.com

SPEC FILE PREAMBLE (PAGE 22)

● Name - name of the software being packaged
● Version - upstream version of the software
● Release - release of the package
● Summary - short summary of what the package contains
● License - software license of the software being packaged
● URL - software or software vendor’s website
● Source - path or URL for software source code archive or

other files to be included in the package
● Patch - file name of patch files to apply to the software

carl@redhat.com

SPEC FILE PREAMBLE CONT. (PAGE 22)

● BuildArch - used to declare a package as architecture
independent (noarch)

● BuildRequires - packages that must be installed on the
system building the package

● Requires - packages that must be installed on the system
installing the package

● ExcludeArch - architectures this package explicitly does not
support

● ExclusiveArch - architectures this package only supports

carl@redhat.com

SPEC FILE BODY (PAGE 23)

● %description - full description of the software
● %prep - commands to prepare the source code for being built

(unpacking archives, applying patches, etc.)
● %build - commands for actually building the software into

machine code (compiled languages) or byte code (for
byte-compiled interpreted languages)

● %install - commands to install the built files into
appropriate filesystems locations relative to the %buildroot
directory

● %check - commands to test the software, e.g. run unit tests
● %files - list of files that will be installed on the target system
● %changelog - record of changes that have happened to the

package between different versions/releases

carl@redhat.com

RPM MACROS (PAGE 24)

● Variable for text substitution.
● Can be conditional, meaning only expand the macro if some

condition is true.
● Can be explored outside of an RPM build.

○ rpm --eval to evaluate a specific macro
○ rpm --define to define a macro to influence other

macros being evaluated
○ rpm --showrc to print all defined macros

carl@redhat.com

COMMON MACROS (PAGES 24-25)

● Filesystem locations
○ %{_bindir} ⟶ /usr/bin
○ %{_libexecdir} ⟶ /usr/libexec

● Distribution properties
○ %{centos} ⟶ 9
○ %{el9} ⟶ 1
○ %{dist} ⟶ .el9

carl@redhat.com

WORKING WITH SPEC FILES (PAGE 25)

● A big part of packaging software into RPMs is editing spec
files.

● Most packagers don’t create spec files completely from
scratch.
○ Use built in templates from their text editor
○ Use rpmdev-newspec, which creates a spec file with the

basic structure (preamble and body sections) that is then
adjusted for the software being package.

carl@redhat.com

LAB - WORKING WITH SPEC FILES (PAGE 25)

Download the tarballs and patch files mentioned on this page. Place
them in the ~/rpmbuild/SOURCES directory.

We will be working with three example “hello world” programs today.
Create a new spec file for each of them using rpmdev-newspec as
detailed on this page.

Time: 5 minutes

carl@redhat.com

LAB - BELLO SPEC FILE (PAGES 26-31)

In this lab we will write the spec file for the bello program. It is an
example “hello world” program written in Bash.

Time: 15 minutes

carl@redhat.com

LAB - PELLO SPEC FILE (PAGES 31-38)

In this lab we will write the spec file for the pello program. It is an
example “hello world” program written in Python.

Time: 15 minutes

carl@redhat.com

LAB - CELLO SPEC FILE (PAGES 39-44)

In this lab we will write the spec file for the cello program. It is an
example “hello world” program written in C.

Time: 15 minutes

carl@redhat.com

BUILDING RPMS (PAGES 44-47)

● Up until now we’ve been preparing ourselves for rpmbuild.
● We’ve covered:

○ How software is built from source code.
○ How arbitrary artifacts built from source code are

installed.
○ Preparing our RPM build environment.
○ How to instruct rpmbuild what to do (the spec file).

● We will use rpmbuild to build source RPMs (SRPMs) as well
as binary RPMs.

● We will also explore some aspects of rpmbuild that can be
surprising.

carl@redhat.com

LAB - BUILDING RPMS (PAGES 44-47)

In this lab we will build source RPMs and binary RPMs for the bello,
pello, and cello programs.

Make sure to only run the rpmbuild command as a non-root user.
Errors in a spec file can have negative effects on the system that is
performing the build.

Time: 15 minutes

carl@redhat.com

QUALITY CHECKING RPMS (PAGES 47-51)

● rpmlint is a linter tool for spec files, SRPMs, and RPMs.
● Can report common packaging errors.
● Fedora 35+ has rpmlint version 2, whose output will not

match the examples in the guide.

carl@redhat.com

LAB - QUALITY CHECKING RPMS (PAGES 47-51)

In this lab we will check our spec files, SRPMs, and RPMs for quality using
rpmlint.

Time: 15 minutes

carl@redhat.com

ADVANCED TOPICS (PAGES 52-74)

● Resources for your packaging adventures after this workshop.
● Of particular note, we recommend reading up about:

○ mock
○ dist-git
○ Defining your own macros
○ Epochs
○ Scriptlets
○ Conditionals

carl@redhat.com

MOCK (PAGES 55-59)

● Drawbacks of using rpmbuild directly:
○ Build requirements must be installed on the system

running rpmbuild.
○ A build requirement that is already installed is easy to

forget to list in the spec file.
○ Can only build RPMs targeting the same operating

system and release.
● mock is a tool that builds packages in isolated chroots.

○ Build requirements are installed in chroot, not system.
○ Can build RPMs for different operating systems and

releases than your system.
○ Chroots are automatically created and removed.

THAT’S ALL FOLKS!

