@ fedora
PACKAGING FOR BEGINNERS

Troy Dawson
EPEL Steering Committee Chair
Carl George 2

CPE EPEL Team Lead tdawson@redhat.com

£ S ES carl@redhat.com . .y
g v @| Nils Philippsen
@carlwgeorge CPE Engineer

M nils@fedhatcom



SHAMELESS PLUG FOR THE EPEL SURVEY

N case you missed it during the introductory remarks, EPEL is
doing a survey and we'd love your feedback.

Survey link:

https://fedoraproject.limequery.com/396386 E
or

https://tinyurl.com/epelsurvey2022



https://fedoraproject.limequery.com/396386
https://tinyurl.com/epelsurvey2022

TOPICS FOR TODAY

General topics

e \What is source code?

e How programs are made.

e Building software from
source.

e Patching software.

e [nstalling arbitrary artifacts.

B | carl@redhat.com

RPM packaging

Whatisan RPM?
What is a spec file?
Buildroots

RPM macros

Building RPMs

Quality checking RPMs




ABOUT THIS GUIDE

Our workshop today will roughly follow the Red Hat Developer
RPM Packaging Guide.

The guide will be a resource today and a reference later.
We will not cover the whole thing in this session.

Appendix is full of advanced topics we will not have time for.
It is a living document.

Pull requests are welcome and encouraged.

https://github.com/redhat-developer/rom-packaging-guide

B | carl@redhat.com



https://github.com/redhat-developer/rpm-packaging-guide

ABOUT THIS GUIDE CONT.

Packaging guide online:
https://rpom-packaging-guide.github.io/fom-packaging-guide.pdf
or

https://tinyurl.com/nestrpm



https://rpm-packaging-guide.github.io/rpm-packaging-guide.pdf
https://tinyurl.com/nestrpm

PREREQUISITES

e You will need access to a Fedora, CentOS, RHEL, or RHEL
derivative (Alma, Rocky, Oracle, etc.) to perform the labs in
today's workshop.

e Thiscan be the machine you're using or a remote system you have
SSH access to.

B | carl@redhat.com




LAB - PREREQUISITES (PAGE 3)

Run the specified dnfiyum command on this page to install the
packages you will need to complete the workshop.

If anyone is running an EL8 system, see the adjustments needed here:
https://github.com/redhat-developer/rom-packaging-guide/pull/90

Time: <5 minutes

/ ~ (@ fedora

carl@redhat.com


https://github.com/redhat-developer/rpm-packaging-guide/pull/90

GENERAL TOPICS AND BACKGROUND



WHAT IS SOURCE CODE? (PAGE 7)

e Human friendly representation of instructions for the

computer.

e The Bash shell is an interactive shell which happens to be
‘scriptable” (as most shells are). Its scripting language is in
fact a programming language and therefore its instructions

to the computer can be considered source code.

B | carl@redhat.com




HOW PROGRAMS ARE MADE (PAGE 8)

e Compilation
o The process by which source code is translated into a
representation the computer understands, native
computer language or otherwise.
e Types of execution
o Natively compiled
o Interpreted
m Byte compiled
m Raw interpreted

B | carl@redhat.com




TYPES OF BUILDS (PAGE 8)

e Native PROCRAMMING @

LANGUAGE

o Translated (compiled) directly to machine code
o Can execute directly on the system =GO @
e [nterpreted (byte compiled)

o Translated into an optimized intermediate P (
representation known as byte code t_i)
o Needs an interpreter to execute a —
e |Interpreted (raw) Java

o Interpreted and executed directly by its
runtime as the source code is parsed @BASH
o Needs an interpreter to execute

%
— ZSHELL

B | carl@redhat.com




BUILDING SOFTWARE (PAGES 9-12)

e Building
o Software compilation is often referred to as "building”.
o "Build systems” or “build tools” such as make or meson
automate this process.
e Natively compiled source code
o Must be “built” in order to execute as it doesn't have an
INnterpreter to execute it otherwise.
o Hardware architecture specific.
e |nterpreted source code
o If byte-compiled, byte code must must be “built”.
o Some byte-compiled languages do this automatically
(Python, Ruby) and others must be built by hand (Java).

B | carl@redhat.com




PATCHING SOFTWARE (PAGES 12-14)

e A software patch is much like a cloth patch used in repair of a
shirt, a blanket, a pair of pants, etc.

e [t's meant to either repair a defect (bug) found in the software
or add new functionality that was previously missing.

e Thisisimportant for RPM packagers because we will often
find ourselves needing to fix something or add functionality
before the next upstream version.

e Original source code remains pristine for auditability,
reproducibility, and debugging purposes.

B | carl@redhat.com




INSTALLING ARTIFACTS (PAGES 14-16)

e [nstallation on Linux systems
o Placing file in the “correct” place.
e Filesystem Hierarchy Standard (FHS)
o Default directory structure.
o Defines context for arbitrary files based on location (/etc,
/usr/bin, /usr/share, and so on).
e install command
o Part of GNU coreutils.
o Copiesfiles into their destination.
o Handles modes, ownership, etc.

B | carl@redhat.com




RPM PACKAGING GUIDE



WHAT IS AN RPM PACKAGE? (PAGE 20)

e File containing other files and metadata about them.
e More specifically
o Lead 96 bytes of “magic” (no longer used, retained for
backwards compatibility).
o Digital signature.
o RPM header containing the metadata.
o CPIO archive containing the payload (the actual files to be
Installed on the target system).

B | carl@redhat.com




WORKSPACE SETUP (PAGE 21)

e Therpmdevtools package includes the rpmdev-setuptree

command.
e Running that command on a system will create the following
directories.
o ~/rpmbuild/BUILD
o ~/rpmbuild/RPMS
o ~/rpmbuild/SOURCES
o ~/rpmbuild/SPECS
o ~/rpmbuild/SRPMS

B | carl@redhat.com




LAB - WORKSPACE SETUP (PAGE 21)

Run the rpmdev-setuptree command on your system to set up the
directory structure we will be using for the rest of the labs.

Time: <5 minutes

/ ) fedora

' carl@redhat.com



SPEC FILES



WHAT IS A SPEC FILE? (PAGE 21)

e Recipe or set of instructions to tell rombuild how to actually
build an RPM.

e Composed of various sections and headings.
o Metadata
o Build instructions
o File manifest

e \Where we define the name, version, and release (NVR)
o Thisis used to compare packages to determine which

available packages are upgrades for installed packages.

o Example:bash-5.1.16-2.fc36

B | carl@redhat.com




SPEC FILE PREAMBLE (PAGE 22)

Name - name of the software being packaged

Version - upstream version of the software

Release - release of the package

Summary - short summary of what the package contains
License - software license of the software being packaged
URL - software or software vendor's website

Source - path or URL for software source code archive or
other files to be included in the package

e Patch - file name of patch files to apply to the software

B | carl@redhat.com




SPEC FILE PREAMBLE CONT. (PAGE 22)

e BuildArch - used to declare a package as architecture
iIndependent (noarch)

e BuildRequires - packages that must be installed on the
system building the package

e Requires - packages that must be installed on the system
installing the package

e ExcludeArch - architectures this package explicitly does not
support

e ExclusiveArch - architectures this package only supports

B | carl@redhat.com




SPEC FILE BODY (PAGE 23)

e %description - full description of the software

e %prep-commands to prepare the source code for being built
(unpacking archives, applying patches, etc.)

e %build-commands for actually building the software into
machine code (compiled languages) or byte code (for
byte-compiled interpreted languages)

e %install - commands to install the built files into
appropriate filesystems locations relative to the %buildroot
directory

e %check - commands to test the software, e.g. run unit tests

e %files - list of files that will be installed on the target system

e %changelog - record of changes that have happened to the

. ..Package between different versions/releases




RPM MACROS (PAGE 24)

e \Variable for text substitution.
e Can be conditional, meaning only expand the macro if some
condition is true.
e Can be explored outside of an RPM build.
o rpm --eval toevaluate a specific macro
o rpm --define to define a macro to influence other
Macros being evaluated
o rpm --showrc to print all defined macros

B | carl@redhat.com




COMMON MACROS (PAGES 24-25)

e Filesystem locations

o %{_bindir} — /usr/bin

o %{_libexecdir} — /usr/libexec
e Distribution properties

o %{centos}—9

o %{el9} —1

o %{dist} — .el9

B | carl@redhat.com




WORKING WITH SPEC FILES (PAGE 25)

e A big part of packaging software into RPMs is editing spec
files.

e Most packagers don't create spec files completely from
scratch.
o Use built in templates from their text editor
o Use rpmdev-newspec, which creates a spec file with the
basic structure (preamble and body sections) that is then
adjusted for the software being package.

B | carl@redhat.com




LAB - WORKING WITH SPEC FILES (PAGE 25)

Download the tarballs and patch files mentioned on this page. Place
them in the ~/rpmbuild/SOURCES directory.

We will be working with three example “hello world” programs today.
Create a new spec file for each of them using rpmdev-newspec as
detailed on this page.

Time: 5 minutes

/ ) fedora

' carl@redhat.com



LAB - BELLO SPEC FILE (PAGES 26-31)

In this lab we will write the spec file for the bello program. It isan
example “hello world"” program written in Bash.

Time: 15 minutes

/ ) fedora

' carl@redhat.com



LAB - PELLO SPEC FILE (PAGES 31-38)

In this lab we will write the spec file for the pello program. It isan
example "hello world” program written in Python.

Time: 15 minutes

/ ) fedora

' carl@redhat.com



LAB - CELLO SPEC FILE (PAGES 39-44)

N this lab we will write the spec file for the cello program. It isan
example “hello world"” program written in C.

Time: 15 minutes

/ ) fedora

' carl@redhat.com



BUILDING RPMS (PAGES 44-47)

e Up until now we've been preparing ourselves for rpmbuild.
e \We've covered:
o How software is built from source code.
o How arbitrary artifacts built from source code are
installed.
o Preparing our RPM build environment.
o How toinstruct rpmbuild what to do (the spec file).
e We will use rpmbuild to build source RPMs (SRPMs) as well
as binary RPMs.
e \We will also explore some aspects of rpombuild that can be
surprising.

B | carl@redhat.com




LAB - BUILDING RPMS (PAGES 44-47)

N this lab we will build source RPMs and binary RPMs for the bello,
pello, and cello programs.

Make sure to only run the rombuild command as a non-root user.
Errors in a spec file can have negative effects on the system that is
performing the build.

Time: 15 minutes

 a et - (@fedora



QUALITY CHECKING RPMS (PAGES 47-51)

e rpmlintisa linter tool for spec files, SRPMs, and RPMSs.

e Canreport common packaging errors.

e Fedora 35+ has rpmlint version 2, whose output will not
mMatch the examples in the guide.

B | carl@redhat.com




LAB - QUALITY CHECKING RPMS (PAGES 47-51)

In this lab we will check our spec files, SRPMs, and RPMs for quality using
romlint.

Time: 15 minutes

 Bredon



ADVANCED TOPICS (PAGES 52-74)

e Resources for your packaging adventures after this workshop.
e Of particular note, we recommend reading up about:
o mock
dist-git
Defining your own macros
Epochs
Scriptlets
Conditionals

O O O O O

B | carl@redhat.com




MOCK (PAGES 55-59)

e Drawbacks of using rpmbuild directly:
o Build requirements must be installed on the system
running rpmbuild.
o A build requirement that is already installed is easy to
forget to list in the spec file.
o Can only build RPMs targeting the same operating
system and release.
e mock is a tool that builds packages in isolated chroots.
o Build requirements are installed in chroot, not system.
o Can build RPMs for different operating systems and
releases than your system.
o Chroots are automatically created and removed.

B | carl@redhat.com




THAT’S ALL FOLKS!



