
PACKAGING WORKSHOP

CARL GEORGE
CPE EPEL Team Lead

carl@redhat.com
@carlwgeorge@fosstodon.org
@carlwgeorge:matrix.org

carl@redhat.com

LAB: INITIALIZE

Open the link below and click the “Launch” button.

bit.ly/hellorpm

https://bit.ly/hellorpm

carl@redhat.com

WHAT IS RPM?

● Package format used by:
● Fedora Linux

● CentOS Stream

● Red Hat Enterprise Linux

● many others

● Consumed by package managers such as dnf

carl@redhat.com

WHY PACKAGE WITH RPM?

● Easily install, reinstall, remove, and upgrade software

● Query and verify installed packages

● Metadata to describe package properties and relationships with
other packages

● Digitally signed packages to validate authenticity

● Distribute packages in dnf repositories

● Pristine sources to ease future maintenance

carl@redhat.com

WHAT IS AN RPM PACKAGE?

● Special archive containing files and metadata

● Two types
● Binary RPM contains files to be installed on the target system

● Source RPM contains software source code and instructions for building
a binary RPM

carl@redhat.com

WHAT IS AN RPM SPEC FILE?

● Recipe for building the package

● Preamble that defines metadata about the package

● Body with several sections for various stages of the build process

● Conditionals for flexibility between operating systems,
architectures, etc.

carl@redhat.com

RPM MACROS

● Variables for text substitution in the spec file
● Syntax: %example or %{example}

● Some macros accept parameters to influence the output

● Can be defined inside the spec file or on the system
● /usr/lib/rpm/macros.d/macros.*

● /etc/rpm/macros.*

● ~/.rpmmacros

carl@redhat.com

RPM MACROS

● Can be conditional to only expand when the macro is defined
● %{?dist}

● Another conditional form is to insert text when defined
● %{?rhel:--disable-feature}

● Can be explored outside the build process
● rpm --eval '%example' evaluate a specific macro⟶

● rpm --showrc print all defined macros⟶

carl@redhat.com

COMMON MACROS

● Filesystem paths
● %{_bindir} ⟶ /usr/bin

● %{_datadir} ⟶ /usr/share

● %{_sysconfdir} ⟶ /etc

● Operating system properties
● %{rhel} ⟶ 9

● %{dist} ⟶ .el9

● %{el9} ⟶ 1

carl@redhat.com

COMMON MACROS

● Build process helpers
● %autosetup extract source code archives and apply patches⟶

● %configure ⟶ ./configure with packaging-specific options

● %make_build ⟶ make with packaging-specific options

● %make_install ⟶ make install with packaging-specific options

carl@redhat.com

COMMON MACROS

● Python helpers
● %py3_build ⟶ python3 setup.py build

● %py3_install ⟶ python3 setup.py install

● Modern Python helpers
● %pyproject_wheel wheel-based Python build⟶

● %pyproject_install wheel-based Python install⟶

carl@redhat.com

COMMON MACROS

● CMake helpers
● %cmake ⟶ cmake

● %cmake_build ⟶ cmake --build

● %cmake_install ⟶ cmake --install

● Meson helpers
● %meson ⟶ meson

● %meson_build ⟶ meson compile

● %meson_install ⟶ meson install

carl@redhat.com

COMMON MACROS

● Test suite helpers
● %pytest ⟶ pytest

● %ctest ⟶ ctest

● %meson ⟶ meson

● %meson_test ⟶ meson test

carl@redhat.com

PACKAGING WORKSPACE SETUP

● rpmdev-setuptree (from the rpmdevtools package) creates
several directories
● ~/rpmbuild/BUILD

● ~/rpmbuild/RPMS

● ~/rpmbuild/SOURCES

● ~/rpmbuild/SPECS

● ~/rpmbuild/SRPMS

carl@redhat.com

LAB: WORKSPACE SETUP

Your first challenge is to set up your packaging workspace.

Click the “Start” button and follow the on screen instructions.

Once you have completed the instructions, click the “Next” button.

carl@redhat.com

SPEC FILE PREAMBLE

● Name name of the package, should match the spec file name⟶

● Version version of the software being packaged⟶

● Release used to distinguish between different builds of the ⟶
same software version

● The properties form a useful identifier known as the NVR
● gawk-4.2.1-4.el8

● tzdata-2023d-1.el9

● virt-what-1.25-4.fc39

carl@redhat.com

SPEC FILE PREAMBLE

● Epoch optional integer used to override normal version-⟶
release sorting order
● Can never be removed

● Last resort to correct upgrade path

● 2024.01 > 1.0.0

● 2024.01 < 1:1.0.0

carl@redhat.com

SPEC FILE PREAMBLE

● Summary short one line summary⟶

● License identifier for the license of the software⟶

● URL URL for more information about the software⟶

● BuildArch defaults to the build system architecture, can be ⟶
set to noarch for packages with no architecture-specific files

carl@redhat.com

SPEC FILE PREAMBLE

● Source file name or URL of file needed to build the package, ⟶
such as a source code archive or default config files

● Patch file name or URL of patch to apply to the source code⟶

● These two tags can be used multiple times

● Optionally suffixed with numbers
● Source0

● Source1

carl@redhat.com

SPEC FILE PREAMBLE

● BuildRequires other packages needed to build this ⟶
package

● Requires other packages needed to install this package⟶

● Recommends weak requires, installed by default but can be ⟶
removed

● Supplements reverse recommends⟶

carl@redhat.com

SPEC FILE PREAMBLE

● Conflicts other packages that cannot be installed at the ⟶
same time

● Obsoletes used to replace one package with another⟶

● Provides allows other packages to refer to this package by ⟶
another name

carl@redhat.com

SPEC FILE PREAMBLE

● %description description of the package, can span multiple ⟶
lines

● %package <name> starts a preamble section for a separate ⟶
package, often referred to as a sub-package

● %description <name> description for a sub-package⟶

carl@redhat.com

SPEC FILE BODY

● %prep commands to prepare the source code for building, ⟶
such as unpacking archives and applying patches

● %build commands to build the software⟶

● %install commands to copy the desired build artifacts into ⟶
a directory tree relative to the %{buildroot}

● %check commands to test the software, such as unit tests⟶

carl@redhat.com

SPEC FILE BODY

● %files list of files and directories that will be installed on the ⟶
target system

● %changelog record of changes that have happened to the ⟶
package between different versions and releases

carl@redhat.com

FILE ATTRIBUTES

● In %files, each line can be preceded by an attribute
● %dir own just the directory itself, but not its contents⟶

● %config mark as a configuration file⟶

● %config(noreplace) mark as a configuration file and prevent it ⟶
from being overwritten on updates

● %attr(<mode>,<user>,<group>) set non-default permissions or ⟶
ownership

carl@redhat.com

FILE ATTRIBUTES

● Some attributes accept relative paths, which copy the specified
files into an appropriate path relative to the %{buildroot}
● %license copy files to ⟶ /usr/share/licenses/%{name}/ and mark

as license files

● %doc copy files to ⟶ /usr/share/doc/%{name}/ and mark as
documentation files

carl@redhat.com

CREATING SPEC FILES

● From scratch

● Copy a similar spec file and adjust as needed

● Automatic templates from a text editor

● rpmdev-newspec (from the rpmdevtools package) will create a
new spec file from templates

carl@redhat.com

CREATING CHANGELOG ENTRIES

● By hand

● Copy another changelog entry and adjust as needed

● Text editor plugins

● rpmdev-bumpspec (from the rpmdevtools package) will create
new changelog entries and simultaneously adjust version and
release tags

carl@redhat.com

BUILDING RPMS

● RPMs are built with the rpmbuild command
● rpmbuild expects the directory structure from rpmdev-setuptree

● Various build modes
● -bs build an SRPM from a spec file and sources⟶

● -bb build an RPM from a spec file and sources⟶

● -ba build both an SRPM and an RPM from a spec file and sources⟶

● --rebuild build an RPM from an SRPM⟶

carl@redhat.com

QUALITY CHECKING RPMS

● rpmlint is a linter tool for spec files, SRPMs, and RPMs

● Identifies common packaging errors

● Ideal to resolve all errors and warnings, but not always possible

carl@redhat.com

QUALITY CHECKING RPMS

● rpm can query an uninstalled RPM by using the --package flag

● Consider the following additional flags:
● --info

● --list

● --requires

● --provides

● --conflicts

● --changelog

carl@redhat.com

LAB: PACKAGING BELLO

Your next challenge is to package bello, a program written in Bash.

Click the “Start” button and follow the on screen instructions.

Once you have completed the instructions, click the “Next” button.

carl@redhat.com

INSTALLING BUILD REQUIREMENTS

● rpmbuild needs the build requirements listed in the spec file to
be installed on the build host

● Can be installed manually or with dnf builddep

carl@redhat.com

LAB: PACKAGING CELLO

Your next challenge is to package cello, a program written in C.

Click the “Start” button and follow the on screen instructions.

Once you have completed the instructions, click the “Next” button.

carl@redhat.com

LAB: PACKAGING PELLO

Your next challenge is to package pello, a program written in Python.

Click the “Start” button and follow the on screen instructions.

Once you have completed the instructions, click the “Next” button.

carl@redhat.com

MOCK

● Drawbacks of using rpmbuild directly
● Build requirements installed directly on build host

● Build requirements that happen to already be installed are easy to
forget in the spec file

● Can only build RPMs targeting the same operating system (and
operating system version) as the build host

carl@redhat.com

MOCK

● mock is a tool that builds RPMs in isolated chroots
● Uses rpmbuild internally

● Build requirements are installed in the chroot, not the build host

● Helps identify missing build requirements

● Can build RPMs targeting a different operating system (and operating
system version) as the build host

● Chroots are automatically created and removed

● Widely used (koji, copr, fedpkg, and more)

carl@redhat.com

LAB: BUILDING WITH MOCK

Your final challenge is to build the pello package again, but using the
mock tool this time.

Click the “Start” button and follow the on screen instructions.

Once you have completed the instructions, click the “Next” button.

carl@redhat.com

BECOME A FEDORA/EPEL PACKAGER

Interested in learning more? Consider becoming a Fedora and EPEL
package maintainer.

bit.ly/fedorapackager

https://bit.ly/fedorapackager

THANK YOU

carl@redhat.com
@carlwgeorge@fosstodon.org
@carlwgeorge:matrix.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

